#1. Import the numpy package under the name np
import numpy as np
2. Print the numpy version and the configuration
import numpy as np
print(np.__version__)
3. Create a null vector of size 10
data = np.zeros(10)
data
4. How to find the memory size of any array
#메모리 크기 확인
data = np.zeros((5,5))
print(data.size)
print(data.itemsize)
print("%d bytes" % (data.size * data.itemsize))
5. How to get the documentation of the numpy add function from the command line?
np.info(np.add)
6. Create a null vector of size 10 but the fifth value which is 1
10게 에서 5번째는 1로 한다.
data = np.zeros(10)
data[4] = 1
data
7. Create a vector with values ranging from 10 to 49
data = np.arange(10,50)
data
8. Reverse a vector (first element becomes last)
data = np.arange(10)
data = data[::-1]
data
9. Create a 3x3 matrix with values ranging from 0 to 8
data = np.arange(9).reshape(3,3)
data
10. Find indices of non-zero elements from [1,2,0,0,4,0]
data = np.nonzero([1,2,0,0,4,0])
data
11. Create a 3x3 identity matrix
data = np.eye(3)
print(data)
12. Create a 3x3x3 array with random values
data = np.random.random((3,3,3))
data
13. Create a 10x10 array with random values and find the minimum and maximum values
import numpy as np
data = np.random.random((10,10))
_min, _max = data.min(), data.max()
_min, _max
14. Create a random vector of size 30 and find the mean value
data = np.random.random(30)
print(data.mean())
15. Create a 2d array with 1 on the border and 0 inside
#외부는 1 내부는 0으로 해준다.
import numpy as np
data = np.ones((5,5))
data[1:-1, 1:-1] = 0
data
16. How to add a border (filled with 0's) around an existing array?
data = np.zeros((5,5))
print(data)
print('-'* 10)
# constant_values 주위의 값을 이것으로 한다.
data = np.pad(data,pad_width = 1, mode='constant', constant_values=0)
print(data)
17. What is the result of the following expression?
0 * np.nan
np.nan == np.nan
np.inf > np.nan
np.nan - np.nan
np.nan in set([np.nan])
0.3 == 3 * 0.1
print(0 * np.nan)
print(np.nan == np.nan)
print(np.inf > np.nan)
print(np.nan - np.nan)
print(np.nan in set([np.nan]))
print(0.3 == 3 * 0.1)
18. Create a 5x5 matrix with values 1,2,3,4 just below the diagonal
#np.diag
data = np.diag(1+np.arange(4), k = -1)
data
19. Create a 8x8 matrix and fill it with a checkerboard pattern
data = np.zeros((8,8))
data[::2, 1::2] = 1
data[1::2,::2] = 1
data
20. Consider a (6,7,8) shape array, what is the index (x,y,z) of the 100th element?
#np.unravel_index
data = np.unravel_index(99, (6,7,8))
data
21. Create a checkerboard 8x8 matrix using the tile function
data = np.array([[0, 1],[1,0]])
data = np.tile(data, (4,4))
data
22. Normalize a 5x5 random matrix
#(x -mean)/std
data = np.random.random((5,5))
data = (data- np.mean(data)) / (np.std(data))
data
23. Create a custom dtype that describes a color as four unsigned bytes (RGBA)
#np.dtype
data = np.dtype([("r",np.ubyte, 1),("g",np.ubyte, 1),("b",np.ubyte, 1),("a",np.ubyte, 1)])
data
24. Multiply a 5x3 matrix by a 3x2 matrix (real matrix product)
data = np.dot(np.ones((5,3)), np.ones((3,2)))
print(data)
25. Given a 1D array, negate all elements which are between 3 and 8, in place.
# 3부터 8까지 마이너스 로 바꾸기
data = np.arange(10)
data[(3<= data) & (data<=8)] *= -1
print(data)
'문제 > Numpy 100제' 카테고리의 다른 글
numpy exercise-4 (0) | 2021.02.03 |
---|---|
100 numpy exercises-3 (0) | 2021.01.29 |
100 numpy exercises-2 (0) | 2021.01.28 |